Speicherung von solarer Energie in chemischen Brennstoffen mittels Photoelektrochemie

Bernhard Kaiser

Institute of Materials Science and Graduate School of Energy Science and Engineering TU Darmstadt, Petersenstrasse 32, 64287 Darmstadt kaiser@surface.tu-darmstadt.de

Solare Brennstoffe mittels künstlicher Photosynthese

Unter Sonnenlicht werden mit den Wurzeln aufgenommenes Wasser und Nährstoffe sowie das CO_2 der Luft zu Pflanzenmaterie verwandelt.

"Water will be the coal of the future" Jules Verne, The Mysterious Island, 1874

Ca. 45 Millionen Tonnen Wasserstoff weltweit pro Jahr !

Hauptanwendungen:

- $\approx 50\% \rightarrow$ Ammoniaksynthese (Düngemittel, Haushaltsreiniger)
- ≈ 37% → Raffinerien (Entfernung von Schwefel aus Benzin, Umwandlung schwerer Kohlenwasserstoffen in Benzin und Diesel)
- ≈ 13% → Hydrogenisierung von Fett, Methanol, Glaserzeugung, Kühlung, Wetterballone, Raketentreibstoff
- Quellen: 96 % fossilen Ursprungs: Gas, Öl und Kohle
 - 4 % Wasserelektrolyse

Speicherung: unkritisch

24.01.2013 | Bernhard Kaiser | Materials Valley "Elektrochemie" | 3

 CO_2

Speicherung von Wasserstoff

- Komprimiert 200 500 bar (Herstellung 1 30 bar)
- Flüssiger Wasserstoff (Siedepunkt 20K)
- Cryo-Adsorption
- Feststoffspeicher (Hydride)
- Ammoniakverbindungen über Ameisensäure
- Methan (Sabatier-Prozess)
- Methanol (Fischer-Tropsch-Verfahren)

Direkte Wasserstofferzeugung mittels Photokatalyse

"Photokatalytisches" Bauelement (PC) Oxid - Nanopartikel

Highly efficient H₂ evolution from an aqueous K₂SO₃ and Na₂S solution over Ru-loaded CuInS₂- AgInS₂-ZnS solid solution photocatalyst under irradiation using a solar simulator, $\eta < 1\%$

Kato, Kudo; Catalysis Today 78, 561 (2003)

Direkte Wasserstofferzeugung mittels Photoelektrochemie

Photoelektrochemisches Bauelement (PEC) basierend auf Halbleiterelektroden

24.01.2013 | Bernhard Kaiser | Materials Valley "Elektrochemie" | 6

Vorteile der photoelektrochemischen Wasserspaltung

- Geringe Überspannungen aufgrund geringer Stromdichten
- Raumtemperatur Prozess
- Getrennte Erzeugung und einfache Separierung von O₂ und H₂
- H₂ mit hoher Reinheit
- Dezentral, kleine Anlagengröße, aber auch hochskalierbar
- Monolithischer Aufbau (Photovoltaik & Elektrolyse): geringere Material- und Bauteilkosten
- Ausgangsstoff: Leitungswasser oder Meerwasser
- Aufbau rein aus stabilem anorganischen Material möglich

Photosynthese

Protein complex PS II

Das künstliche (anorganische) Blatt

Dreifach-Solarzelle aus 3-5 Halbleitermaterialien Azur Space Solar Power GmbH

Nocera et al., Science 334, 645 (2011)

- Stabil
- Gülstig
- Häurges Vorkommen
- Erprobte Technologie

"Electrochemical Photolysis of Water at a Semiconductor Electrode"

n-TiO₂ Halbleiter: Bandlücke > 3 eV

A. Fujishima, and K. Honda, Nature 238, 37 (1972).

Stand der Forschung

Efficiency 12%

Nocera (2011) Artificial leaf Si-triple cell

Efficiency 4%

<u>Advantage:</u> high efficency of 12,4% <u>Disadvantage:</u> non-oxide (stability) semiconductor Expensive H2Cost: > \$13/kg € 8 from solar/electrolysis € 3-4 from wind, € 2 from gas (Vattenfall)

Khaselev et al., Science 280, 425 (1998)

Licht (2000) AlGaAs/Si(RuO2)/ HClO4/Pt

Efficiency 18.3%

Strategie

- p-dotierte Halbleiter: Wasserstoff Reduktion
- Halbleiter mit großer Bandlücke: SiC, GaP, ZnTe, GaInP: Einkristalle als Modellsysteme
- Dünnschichthalbleiter: ZnTe (PVD), SiC (MOCVD)
- GaAs, Si Einkristalle als Modellsysteme
- Grenzflächen engineering: Pufferschicht (Isolation, Ladungstransfer) Pt-Katalysatornanopartikel
- Gegenelektrode: Pt, RuO₂/IrO₂

Charakterisierung der Halbleiter / Elektrolyt Grenzfläche

Oberflächenspezifische Untersuchungsmethoden

Cyclovoltammetrie von p-3C-SiC/p-Si(100) in 0.1M H₂SO₄

TECHNISCHE

UNIVERSITÄT DARMSTADT

Halbleiter (GaP) – Elektrolyt Kontakt

- indirect band gap 2.26 eV
- electron affinity 3.8 eV
- ionization potential 6.1 eV

24.01.2013 | Bernhard Kaiser | Materials Valley "Elektrochemie" | 16

4.5

 H^+/H_2

CB

3.8

p-GaP(100) / Elektrolyt Energiebanddiagramm

24.01.2013 | Bernhard Kaiser | Materials Valley "Elektrochemie" | 17

p-GaP(100) mit GaN Pufferschicht

p-GaP(100) mit Pt Nanopartikeln

Herausforderung: Kontrolliertes Grenzflächendesign

thin film Ga(In)P

wavelength (nm)

Silizium Tandemzelle (FZ Juelich)

D

Als Europäisches Patent angemeldet mit Evonik Industries AG

0.0

0.5

U(V)

1.0

-0.5

Sample no: A5

= 73.86 = 9.53 %

= -9.77 mA

0.12

0,10

0.08

0.06 (V) 44 0.04

> 0.02 0.00 -0.02

-1.0

Light Dark

2.0

1.5

Tandemzelle Cyclovoltammogramm (gepulste Lichtquelle)

SEM Aufnahme

24.01.2013 | Bernhard Kaiser | Materials Valley "Elektrochemie" | 22

Tandemzelle mit Platin-Nanopartikeln

SEM Aufnahme

Zusammenfassung: Anforderungen an ein anorganisches Blatt

Elektrochemie, Materialwissenschaften, Katalyse Oberflächenphysik & -chemie

Beitrag zur Energieumwandlung und -speicherung

Kooperationsmöglichkeiten Industrie – Universitäre Forschung

Finanzielle Unterstützung

Danke für Ihr Interesse

Wolfram Jaegermann

Jörg Hoppe, Dominic Fertig, Wolfram Calvet Bernhard Kaiser, Jürgen Ziegler, Silvia Vestweber Eswaran Murugasen, Quanbao Ma

